Toxoplasma aldolase is required for metabolism but dispensable for host-cell invasion.

نویسندگان

  • Bang Shen
  • L David Sibley
چکیده

Gliding motility and host-cell invasion by apicomplexan parasites depend on cell-surface adhesins that are translocated via an actin-myosin motor beneath the membrane. The current model posits that fructose-1,6-bisphosphate aldolase (ALD) provides a critical link between the cytoplasmic tails of transmembrane adhesins and the actin-myosin motor. Here we tested this model using the Toxoplasma gondii apical membrane protein 1 (TgAMA1), which binds to aldolase in vitro. TgAMA1 cytoplasmic tail mutations that disrupt ALD binding in vitro showed no correlation with host-cell invasion, indicating this interaction is not essential. Furthermore, ALD-depleted parasites were impaired when grown in glucose, yet they showed normal gliding and invasion in glucose-free medium. Depletion of ALD in the presence of glucose led to accumulation of fructose-1,6-bisphosphate, which has been associated with toxicity in other systems. Finally, TgALD knockout parasites and an ALD mutant that specifically disrupts adhesin binding in vitro also supported normal invasion when cultured in glucose-free medium. Taken together, these results suggest that ALD is primarily important for energy metabolism rather than interacting with microneme adhesins, challenging the current model for apicomplexan motility and invasion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toxoplasma gondii transmembrane microneme proteins and their modular design.

Host cell invasion by the Apicomplexa critically relies on regulated secretion of transmembrane micronemal proteins (TM-MICs). Toxoplasma gondii possesses functionally non-redundant MIC complexes that participate in gliding motility, host cell attachment, moving junction formation, rhoptry secretion and invasion. The TM-MICs are released onto the parasite's surface as complexes capable of inter...

متن کامل

Toxoplasma gondii transmembrane microneme proteins and their modular designmmi_7255 1..18

Summary Host cell invasion by the Apicomplexa critically relies on regulated secretion of transmembrane micronemal proteins (TM-MICs). Toxoplasma gondii possesses functionally non-redundant MICs complexes that participate in gliding motility, host cell attachment, moving junction formation, rhoptry secretion and invasion. The TM-MICs are released onto the parasite's surface as complexes capable...

متن کامل

Two Phosphoglucomutase Paralogs Facilitate Ionophore-Triggered Secretion of the Toxoplasma Micronemes

Paralogs of the widely prevalent phosphoglucomutase (PGM) protein called parafusin function in calcium (Ca2+)-mediated exocytosis across eukaryotes. In Toxoplasma gondii, the parafusin-related protein 1 (PRP1) has been associated with Ca2+-dependent microneme organelle secretion required for essential processes like host cell invasion and egress. Using reverse genetics, we observed PRP1 to be d...

متن کامل

Structure of Toxoplasma gondii fructose-1,6-bisphosphate aldolase

The apicomplexan parasite Toxoplasma gondii must invade host cells to continue its lifecycle. It invades different cell types using an actomyosin motor that is connected to extracellular adhesins via the bridging protein fructose-1,6-bisphosphate aldolase. During invasion, aldolase serves in the role of a structural bridging protein, as opposed to its normal enzymatic role in the glycolysis pat...

متن کامل

Sites of interaction between aldolase and thrombospondin-related anonymous protein in plasmodium.

Gliding motility and host cell invasion by apicomplexan parasites are empowered by an acto-myosin motor located underneath the parasite plasma membrane. The motor is connected to host cell receptors through trans-membrane invasins belonging to the thrombospondin-related anonymous protein (TRAP) family. A recent study indicates that aldolase bridges the cytoplasmic tail of MIC2, the homologous T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 9  شماره 

صفحات  -

تاریخ انتشار 2014